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There occurs a progressive weakness and wastage of skeletal muscle
in different types of muscular dystrophy. The loss of muscle fibers in
dystrophic muscle with impaired function is associated with leakage
of intracellular enzymes, maldistribution of electrolyte content and
metabolic defects in myocytes. Marked increases in the sarcolemma
(SL) Nat K+ ATPase and Ca®* /Mg? T -ecto ATPase activities, as well
as depressions in the sarcoplasmic reticulum (SR) Ca®T -uptake and
Ca*-pump ATPase activities were seen in dystrophic muscles of a
hamster model of myopathy. In addition, impaired mitochondrial
oxidative phosphorylation and decrease in the high energy stores
as a consequence of mitochondrial Ca?T-overload were observed in
these myopathic hamsters. In some forms of muscular dystrophy, it
has been shown that deficiency of dystrophin produces marked al-
terations in the SL permeability and promotes the occurrence of in-
tracellular Ca®* -overload for inducing metabolic defects, activation
of proteases and contractile abnormalities in dystrophic muscle. In-
creasesin SR Ca2 T -release channels, SLNa™-Ca®* exchangerand SL
store-operated Ca?T -channels have been reported to induce Ca™ -
handling abnormalities in a mouse model of muscular dystrophy.
Furthermore, alterations in lipid metabolism and development of ox-
idative stress have been suggested as mechanisms for subcellular re-
modeling and cellular damage in dystrophic muscle. Although, sev-
eral therapeutic interventions including gene therapy are available,
these treatments neither fully prevent the course of development
of muscular disorder nor fully improve the function of dystrophic
muscle. Thus, extensive reasearch work with some novel inhibitors
of oxidative stress, SL Ca?t-entry systems such as store-operated
Ca?*-channels, NaT-Ca?" exchanger and Ca?* /Mg?* -ecto ATPase
(Ca®*-gating mechanism), as well as SR Ca®*-release and Ca®*-
pump systems needs to be carried out in combination of gene ther-
apy forimproved beneficial effects in muscular dystrophy.
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1. Introduction

Muscular dystrophy is a deadly genetic disorder which
represents a group of complex muscular diseases. Patients
with this disease generally suffer from muscle weakness as
well as loss of ambulation, and mostly die in their early twen-
ties due to respiratory and cardiac complications [1, 2]. The
first historical account of muscular dystrophy was given in
1830s by Conte and Gioja that this disease causes progressive
weakness of multiple muscle groups [3]; however, in 1852,
Edward Meryon suggested that a disorder in the cell mem-
brane causes muscular dystrophy but the disease was mis-
taken for tuberculosis [4]. It was suspected that this disease is
genetically transmitted by females and it affects males only, in
addition to causing progressive muscle damage which is re-
placed with connective tissue. Furthermore, it was pointed
out that the development of this skeletal muscle disorder is
not only age and sex dependent but it also affects cardiac mus-
cle in advanced stages [4]. Later on in 1868, this disease was
called Duchenne muscular dystrophy (DMD) after the name
of a French neurologist, Guillaume Duchenne, due to his sig-
nificant contributions in understanding its mechanism [5].
Most of the diagnostic criteria of this disorder, established at
that time, are still being used and these include: (a) weakness
in legs; (b) hyperlordosis; (c) hypertrophy of weak muscle;
(d) reduced muscle contractility on electrical stimulation; (e)
absence of bladder or bowel dysfunction; and (f) sensory dis-
turbances and febrile illness. In addition, there occurs car-
diomyopathy and mental retardation at advanced stages of
this disease and results in death at early age. The progres-
sive nature of these characteristics of muscular dystrophy is
depicted in Fig. 1 [6-9]. Itis pointed out thatin 1878, Gowers
was the first to report the genetic basis of muscular dystrophy
[10] but it was not until 1891, when the concept of histolog-
ical alterations in muscle was outlined and the classification
of muscular dystrophies such as infantile and juvenile types
along with many other subtypes was described [11].
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Fig. 1. Schematic representation of different stages of muscular dystrophy.

Currently, there are approximately 50 muscular dystrophy
causative genes and more than 40 types and subtypes of these
are associated with genetic mutations. These various forms
of muscular dystrophies have been characterized by patterns
of their inheritance, symptoms, origin of gene mutation, age
at onset, rate of progression and level of severity [12]. The
spectrum of mutations varies as it ranges from complete de-
ficiency of a gene product to a decrease in gene expression
and/or expression of an abnormal molecule with complete or
partial loss of functionality. Most of the major types of mus-
cular dystrophies are categorized on the basis of X-linked, au-
tosomal dominant and autosomal recessive genes; the loca-
tion of altered gene product lies in muscle fiber but is linked
to other proteins, enzymes and extracellular matrix [12-14].
While DMD, Becker muscular dystrophy and Limb-Girdle
dystrophies are the common forms of this disease, it is note-
worthy that DMD is the most prevalent and severe form
among various types of muscular dystrophies. In fact, over
80% of cases of muscular dystrophy worldwide are associated
with DMD, whereas most of the other types are fairly rare
[12]. The global prevalence of DMD is 19.8 per 100,000 male
births [15]. However, there are variations in disease etiology;
the common physiognomies of muscular dystrophy include
primary genetic defects and mechanisms based on repetitive
cycles of muscle degeneration, necrosis and impaired regen-
eration resulting in muscle fibrosis, muscle wastage and mus-
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cle dysfunction [8, 16]. The evaluation of family history and
physical symptoms such as contracture, muscle stiffness, and
weakness are the basic diagnostic procedures. In addition to
mutation screening in the predicted gene, the assessment for
muscular dystrophies is carried out from the determination
of muscle weakness, serum creatine kinase (CK) levels, mus-
cle biopsy examination, muscle magnetic resonance imaging,
neurological evaluation, electromyographic and electrocar-
diographic analysis as well as exercise tolerance examination
[16].

In spite of extensive preclinical and clinical research ef-
forts over the past 50 years, the exact pathogenesis and ther-
apies of muscular dystrophy remain to be poorly under-
stood. It should also be emphasized that muscular dystro-
phy is not an entity but represents a group of various mus-
cle disorders, which differ from one another with respect to
the location of defects in plasma membrane, as well as trans-
membrane, extracellular matrix, nuclear membrane, nucleus
and cytosol proteins. Since clinical phenotype and patho-
physiology of muscle degeneration are different in each type
of muscular dystrophy, this article is planned to deal with
biochemical and metabolic alterations in dystrophic mus-
cles from all forms of this disease in a general way rather
than in any specific manner. It is noteworthy that several
molecular and biochemical defects have been identified in
dystrophic muscle and their modulation has been shown to
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slow down the disease progress [12, 17-25]. Abnormali-
ties in dystrophic muscle include increased membrane per-
meability, Ca?*-handling defects, depressed energy produc-
tion, oxidative stress and myocyte necrosis as well as apopto-
sis. Impairment of the blood flow to skeletal muscle is invari-
ably associated with dystrophic muscle dysfunction. It is also
pointed out that irrespective of differences in the pathogene-
sis of different types of muscular dystrophy, dystrophic mus-
cles from all types of diseased subjects show similar metabolic
defects and impaired function. This article is therefore in-
tended to provide a comprehensive and updated information
about metabolic and biochemical alterations in dystrophic
skeletal muscle during the development of muscular disor-
der in general. Derangements for abnormal Ca?*-entry as
well as Ca?*-handling in myocytes from dystrophic muscle
will also be described in some details and in particular, the
role of store-operated Ca?T -channels in the development of
intracellular Ca?T -overload will be outlined. Mechanisms of
Ca?*-handling abnormalities and metabolic defects in dys-
trophic muscles from different experimental models of mus-
cular disease will also be described. Some changes in mem-
brane activities and metabolic status of the hind leg muscle
from myopathic hamsters will be discussed to show if there
is any relationship with impaired muscle performance. Since
dystrophin, an important component for anchoring differ-
ent proteins and enzymes in the membrane, the function of
sarcolemma in several forms of muscular dystrophy will be
evaluated [13, 14, 20]. The significance of dystrophin gene
mutations leading to dystrophin deficiency in the develop-
ment of this disease will also be highlighted. In addition,
attempts will be made to describe some of the therapeutic
strategies, including gene therapy and pharmacologic inter-
ventions, which are used for the management or treatment
of muscular disorder.

2. Biochemical defects in dystrophic muscle

Different mechanisms including impaired metabolism 8,
26-31], structural and biochemical membrane defects [32-
39] and Ca®* regulatory abnormalities [40-52] have been
described to understand the pathogenesis of weakness in dys-
trophic muscle. An increased activity of enzymes, such as CK
in the serum is considered to reflect damage to the muscle cell
membrane and serves as a sensitive marker for the progres-
sion of this disease [53-59]. Recent studies with circulating
proteins and metabolites have validated different biomarkers
for patients with DMD [60-64]. It was demonstrated that
defects of the plasma membrane lead to leakage of several
cellular constituents such as myoglobin, glycogen, potassium,
ATP and creatine from muscle fibres in addition to produc-
ing increased influx of Ca?* in myocytes [33, 43, 65-69]. Ul-
trastructural examination of dystrophic muscle revealed seg-
mental fiber breakdown and Ca?* -deposits in myocytes with
intact basement membrane as significant features [65, 66,70~
72]. Several changes indicating biochemical abnormalities
in the sarcolemma (SL) membrane were observed in differ-
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ent types of dystrophic muscle [73-76]. Marked alterations
in lipid and electrolyte content were also seen in dystrophic
muscle indicating abnormal function of the cell for maintain-
ing appropriate levels of intracellular components [73, 77].
Thus, it has become evident that the increased permeability
of skeletal muscle is reflected by defective SL membrane dur-
ing the development of muscular disease [43, 70, 78].

Alterations in the integrity of dystrophic muscle mem-
brane [79, 80] were associated with changes in different
SL enzyme systems such as Na*-K* ATPase, Ca?t/Mg?*
ecto-ATPase, and adenylyl cyclase [74-76, 81-85]. Since
both cholesterol and phospholipids are known to exert mem-
brane stabilizing effects [86, 87] and the ratio of choles-
terol/phospholipids was elevated in dystrophic muscle [88],
it has been suggested that the observed changes in enzyme ac-
tivities are a consequence of alterations in the SL lipid com-
position. Studies from dystrophic muscle fibroblasts and skin
fibroblast cultures have also shown different alterations such
as cytoplasmic inclusion bodies, defective collagen incorpo-
ration as well as membrane defects [89-93]. Furthermore,
derangements in the function of intracellular membrane sys-
tems such as the sarcoplasmic reticulum (SR) [40, 76, 88] and
mitochondria [41, 76, 94-96] were reported in dystrophic
muscle. Although no alterations in myofibrillar ATPase ac-
tivity and contractile proteins in myopathic hamster mus-
cle were observed [30, 76], some investigators have shown
defective myosin in a chicken model of muscular dystro-
phy [97]. Nonetheless, marked changes in metabolism [26-
30, 98] indicating the impaired performance of skeletal mus-
cle in different types of muscle disorders may be associ-
ated with subcellular defects and metabolic abnormalities. In
addition, maldistribution of electrolytes in dystrophic my-
ocytes [66, 77], there occurs the development of intracellular
Ca®T-overload [41-44, 99], which activates different prote-
olytic enzymes [100, 101] and leads to muscle breakdown as
well as structural defects dystrophic muscle of DMD patients
(102, 103].

Since the discovery of the DMD gene and identification
of the role of dystrophin-deficiency in DMD in 1980s, var-
ious genetically engineered animal models have been devel-
oped to understand the biology, biochemistry and pathophys-
iology of different types of muscular dystrophies [104-106].
The most widely used is a dystrophin-deficient mouse (mdx),
which is considered to be an excellent model for studying
DMD [107-115]. The other animal models of dystrophin-
deficiency have employed pigs [116, 117], rats [118, 119],
dogs [120-122] and cats [123, 124]. It is pointed out that
marked changes in protein, lipids, carbohydrate and energy
metabolism have been observed in skeletal muscle from mdx
dystrophic mouse [125-129]. Furthermore, impaired mi-
tochondrial oxidative phosphorylation and increased Ca?*
content due to dystrophin-deficiency have been reported
in mdx mouse skeletal muscle [130-134]. Treatments of
mdx dystrophic mouse with Ca®*-antagonists, verapamil
and diltiazem, as well as with creatine were observed to re-
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duce skeletal muscle degeneration and mitochondrial dys-
function [135, 136]. It is noteworthy that skeletal muscle
from DMD patients to have also been found to exhibit mi-
tochondrial dysfunction and sarcolemmal alterations due to
dystrophin-deficiency [137, 138]. It is also pointed out that
sarcoglycan-deficiency models have also been developed in
different animals such as hamsters, mice and chickens to ex-
amine metabolic and cellular defects in various muscular dis-
orders [139-145].

3. Metabolic and subcellular defects in
skeletal muscle of myopathic hamster

In order to examine the functional significance of
metabolic and subcellular alterations for impaired perfor-
mance of myopathic muscle, hind leg muscles from two ex-
perimental models (BIO 14.6 and UM-X7.1) of Syrian ham-
ster (-sarcoglycanopathy) at different stages of development
were used [30, 40, 74-76]. It may be noted that the clinical
signs of muscle impairment in BIO 14.6 strain of hamsters
start developing at the age of 100 to 150 days (early stage)
whereas moderate and severe stages of myopathy become ap-
parent at 180-210 days and 260-275 days of age, respectively
[30, 146]. On the other hand, UM-X7.1 strain of myopathic
hamsters develop degenerative lesions as early as 20 to 30 days
whereas these animals at the age of about 60 days and about
150 days were considered to be at moderate and severe stages
of muscular disorder, respectively [74, 147]. Although differ-
ent stages of myopathy in both models of hamsters have been
categorized on the basis of pathological lesions in the hind
leg, it is understood that these stages are arbitrary and reflect
the progression of muscular impairment with respect to the
age of animals.

By employing the BIO 14.6 hamster model of myopa-
thy, Sulakhe et al. [74] were the first to show increases in
the activities of SL Mg?T-ATPase and Na*-K+ ATPase in
skeletal muscle. This observation showing defect in the SL
membrane at the biochemical level was confirmed by Peter
and Fiehn [148], who reported increased activities of Na+-
K+ ATPase and Ca?*-ATPase in myotonic muscles of rats
treated with diazacholesterol. Although no changes in skele-
tal muscle SL ATPase activities were detected at early stages
in BIO 14.6 myopathic hamsters, marked increases in the ac-
tivities of SL Nat-K* ATPase, Mgt -ATPase and Ca?*-
ATPase were seen in both moderate and severe stages of mus-
cular disorder (Table 1) [75]. Likewise, marked increases
in these SL enzyme activities in skeletal muscle were ob-
served in UM-X7.1 strain of myopathic hamsters at both
moderate and severe stages except that Nat-K* ATPase
and Mg2t-ATPase activities were not altered at the mod-
erate stage (Table 1) [76]. Similar increases in the hind
leg skeletal muscle SL Na™-K* ATPase, Mg+ -ATPase and
Ca?*-ATPase were seen in rats on vitamin E deficient diet
[75], which is considered to be a good model for study-
ing the pathogenesis of muscular weakness [34]. However,
preliminary studies with dystrophic skeletal muscles from
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human showed that SL Nat-K* ATPase activity was de-
pressed but both Ca?*-ATPase and Mg?T-ATPase activi-
ties were increased [75]. Decreased Na™-K™ ATPase and
increased Mg?*-ATPase activities were also observed in SL
preparations from dystrophic muscles of Bar Harbor strain of
129/Rej mice [149]. These observations suggest that alter-
ations in SL Na™-K™ ATPase may depend upon the type and
stage of muscular disorder; the increased activity of this en-
zyme may play a compensatory role in maintaining the elec-
trolyte composition of the myopathic muscle whereas the de-
pressed Nat-K* ATPase may be associated with increased
entry of Ca?" through Nat-Ca?" exchange system. Fur-
thermore, the increased activities of skeletal muscle SL Ca?* -
ATPase and Mg? " -ATPase, which have been shown to rep-
resent Ca?T/Mg? T -ecto ATPase [150], may promote Ca?* -
influx for the occurrence of intracellular Ca?* overload and
thus play a pathogenic role for the impaired performance of
myopathic muscle. It is pointed out that SL Ca?*/Mg?*-
ecto ATPase, which is activated by millimolar concentrations
of Ca?* or Mg2*, has been suggested to serve as a “gating
mechanism” for the entry of Ca?™ into the cell [150-153]. Al-
though the status of SL Nat-Ca?* exchange system was not
examined in hamster myopathic muscle, the activity of Na™ -
Ca?* exchange was increased in dystrophic muscle from pa-
tients with DMD as well as mdx model of muscular dystrophy
in mice [154, 155].

Since the SR plays a critical role in regulating the intra-
cellular Ca?* concentration in myocytes, Ca?*-binding and
Ca?*-transport activities of this subcellular organelle were
examined in skeletal muscles of both BIO 14.6 and UM-X7.4
strains of myopathic hamsters at moderate and severe stages
of muscular disorder [40, 76]. The results in Table 2 show
that ATP-dependent Ca?*-binding activities (studied in the
absence of oxalate) of SR from skeletal muscles of myopathic
animals were not altered at both moderate and severe stages.
Although no changes in the ATP-dependent Ca?* -uptake
activities (studied in the presence of oxalate) of SR of myo-
pathic muscle were detected at moderate stage, these Ca?*-
transport activities were depressed in both models of myopa-
thy at severe stages. It may also be noted from Table 2 that
the SR Ca?*-pump ATPase activity was decreased markedly
at severe stages of myopathy. Several investigators have also
reported defects in the Ca®*-transport activities in the SR
preparations from different myopathic animals as well as in
DMD patients [156-159]. However, others have denied the
occurrence of such abnormalities in muscular disorder [160-
162], which may be due to the use of skeletal muscles at early
or moderate stage of the disease. Thus, it appears that the
reduced ability of SR to accumulate Ca®* at the late stage
of muscular disease may be secondary to other mechanisms
leading to impaired performance of skeletal muscle.

The data in Table 3 show the status of mitochondrial
Ca®7 -binding and Ca®* -uptake activities as well as oxidative
phosphorylation in UM-X7.1 strain of hamsters at moderate
or severe stages of myopathy [76]. No changes in mitochon-
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Table 1. ATPase activities of sarcolemma from skeletal muscles of control and myopathic hamsters of different ages.

NaT-Kt ATPase (umoles

Mg2+-ATPase (umoles Ca?t-ATPase (umoles

Pi/mg/hr) Pi/mg protein/hr) Pi/mg/hr)
A. BIO 14.6 myopathic hamsters
a. Control: (100-272 days old) 204412 331+ 1.6 31.5£29
b. Myopathic
(i) 100-150 days old (Early stage) 19.7 £ 1.9 31.5+£24 324+£125
(i) 180-210 days old (Moderate stage) 27.5 + 1.5% 43.3 +2.1* 42.4 £+ 1.4*
(iii) 260-275 days old (Late stage) 38.5 + 3.3* 59.2 4+ 4.2% 56.2 + 3.7*
B. UM-X7.1 myopathic hamsters
(i) 60 days old
Control 6.6 £0.7 30.6 £ 2.6 1004+ 1.3
Myopathic (Moderate stage) 6.5+ 0.4 287 +1.7 16.8 £ 1.0*
(ii) 150 days old
Control 13.8 + 1.1 25.0+ 1.9 27.6 2.8
Myopathic (Late stage) 19.1 +0.8* 50.5 + 4.2* 58.0 £ 5.1*

The data for BIO 14.6 strain of myopathic hamsters are taken from our paper, Dhalla et al. Res Commun Chem Pathol Pharmacol 6, 643-650, 1973
[75] whereas the data for UM-X7.1 strain of myopathic hamsters are taken from our paper Dhalla et al. Clin Sci Mol Med 49, 359-368, 1975 [76].

* Significantly (P < 0.05) different from the corresponding control values.

drial Ca?*-accumulation and ATPase activities as well as
different parameters of oxidative phosphorylation were ob-
served in 150 days old myopathic animals. On the other hand,
60 days old hamster myopathic muscle showed depressions
in both mitochondrial Ca?*-uptake and oxidative phospho-
rylation rate, unlike Ca?*-binding and ATPase, P:O ratios
and RCI values (Table 3). The inability to detect changes
in mitochondrial Ca* -transport and oxidative phosphoryla-
tion in myopathic muscle at late stages of the disease in UM-
X7.1 strain of hamsters was not attributed to the method used
for the isolation of mitochondria because the same proce-
dure was employed for obtaining mitochondrial preparation
from muscles at moderate stage of muscular disease. Since
the mitochondrial defects in myopathic muscle have also been
shown to be due to the occurrence of mitochondrial Ca?* -
overload [41], it is likely that the excessive amount of Ca®*
from mitochondria at late stages of myopathy may have been
lost during the isolation procedure. Nonetheless, other in-
vestigators have shown defects in mitochondrial oxidative
phosphorylation activities in myopathic muscles of BIO 14.6
strain of myopathic hamsters [94-96]. Such abnormalities
in the mitochondrial oxidative phosphorylation can be seen
to impair the ability of myopathic muscle to generate en-
ergy for the function of skeletal muscle myocytes. In fact,
marked changes in the high energy phosphate content and
other metabolic processes showing impaired energy produc-
tion in skeletal muscles from BIO 14.6 strain of hamsters
at late stages of muscular disease have been reported [30].
Some of these data shown in Table 4 indicate that both crea-
tine phosphate and ATP were depressed without any signifi-
cant changes in ADP and AMP content of dystrophic hamster
muscle. Furthermore, lactate, NADH and NADPH were in-
creased indicating marked alterations in muscle metabolism
without any changes in pyruvate content of myopathic mus-
cle (Table 4). These observations support the view that re-
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duction in the high energy phosphate stores due to impaired
process of energy production may play an important role in
dysfunction of skeletal muscle in muscular disorder.

4. Role of dystrophin deficiency in muscular
dystrophy

It is now well known that stability of the cell membrane
is very critical for appropriate function of skeletal muscle and
thus any defect in the plasma membrane can be seen to in-
duce muscular abnormality [14, 15, 23, 25]. Since dystrophin
based cytoskeleton has been shown to anchor various pro-
teins and other constituents of the SL membrane, dystrophin
deficiency has been associated with the development of mus-
cular dystrophy [14, 15, 20, 46, 73, 163]. Advances in molec-
ular biology techniques in late 1980’s have facilitated the dis-
covery of mutations in dystrophin gene on the chromosome
region Xp21, which is the largest known gene, responsible
for the expression of dystrophin protein [164, 165]. This
research was started with the elucidations of 2300 kb dys-
trophin gene, which consists of 79 exons and encodes dys-
trophin protein. Various mutations in this gene identified
thus far, have been shown to reduce the level of dystrophin
protein and lead to the development of muscular dystrophy
as well as cardiomyopathy, respiratory dysfunction and men-
tal retardation [166]. It is also pointed out that the SL dys-
trophin protein has been reported to occur as a dystrophin-
glycoprotein complex consisting of dystroglycans, sarcogly-
cans, sarcospan, dystrobrevins and syntrophins [167, 168].
Furthermore, this devastating inherited muscular disorder is
considered to be caused by mutations in dystrophin gene and
is known to affect mainly males due to X-linked recessive
mode of inheritance; females are carriers of these gene muta-
tions [169].

A deficiency of dystrophin protein plays a significant role
in the pathology of muscular dystrophy, and in this regard,
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Table 2. Ca®" -transport activities of sarcolplasmic reticulum from skeletal muscles of control and myopathic hamsters of

different ages.

ATP-dependent Ca?t - binding

(nmoles/mg protein/5 min)

Ca?t -pump ATPase (WM
Pi/mg protein/5 min)

ATP-dependent Ca®t - uptake

(pmoles/mg protein/5 min)

A. BIO 14.6 myopathic hamsters
(i) 220 days old

Control 153+ 22
Myopathic (Moderate stage) 136 + 11
(ii) 260 days old
Control 142 £5
Myopathic (Late stage) 135+7
B. UM-X7.1 myopathic hamsters
(i) 60 days old
Control 118 13
Myopathic (Moderate stage) 95+ 11
(ii) 150 days old
Control 145+ 12
Myopathic (Late stage) 109 + 14

3.6 £0.20 -

341015 -

3.8+ 045 2.76 £0.31
2.3+£0.62% 1.32 £0.19*
3.8+ 0.52 1.44 £0.15
3.6 +0.21 1.07 £0.19
5.2+0.39 2.56 £0.27
2.8 £0.26% 1.45 £0.21%

The data for BIO 14.6 strain of myopathic hamsters are taken from our paper, Dhalla & Sulakhe. Biochem Med 7, 157-168, 1973 [40] whereas
the data for UM-X7.1 myopathic hamsters are taken from our paper Dhalla et al. Clin Sci Mol Med 49, 359-368, 1975 [76].

* Significantly (P < 0.05) different from the corresponding control values.

Table 3. Mitochondrial Ca?"-transport and oxidative phosphorylation activities of skeletal muscles from UM-X 7.1 strain of

myopathic hamsters of different ages.

60 days old 150 days old
Control  Myopathic (Moderate stage)  Control ~ Mpyopathic (Late stage)
Ca2* - binding (nmoles/5 min/mg) 84+7 7945 116 + 14 113+ 11
Ca?7 - uptakes (nmoles/5 min/mg) 552 + 64 353 + 58* 596 + 73 571 + 49
ATPase activity (umol/5 min/mg) 3.94+0.63 43+0.71 4.54+0.96 5.2 4+1.08
P:O ratio 2.8 +0.07 2.9 +0.05 2.9 +0.04 3.0 +0.06
Phosphorylation rate (umol ADP phosphorylated/min/g protein/min) 110 + 8.8 81 £ 5.6* 127 £19.4 112 £26.0
RCI 5.340.52 6.3 +0.21 81+14 7.6+ 1.1

The data are taken from our paper, Dhalla et al. Clin Sci Mol Med 49, 359-368, 1975 [76].

* Significantly (P < 0.05) different from the corresponding control values.

it is pointed out that more than 1000 mutations have been
identified in dystrophin gene. As a part of an incredibly com-
plex group of proteins, dystrophin allows muscle to func-
tion properly as well as aids in anchoring various compo-
nents within muscle cells and link them to the SL membrane
[167]. Thus, dystrophin provides a scaffold for holding sev-
eral molecules in place near the cell membrane whereas dys-
trophin deficiency dislocates these molecules and cause dis-
orders in their function [167]. There are several reports on
structural, functional, biochemical, molecular and metabolic
defects, which are induced by these dystrophin gene mu-
tations [13, 29, 73, 170, 171]. Reduction of dystrophin-
glycoprotein complex promotes the occurrence of struc-
turally unstable SL membrane, which is more permeable to
extracellular environment and thus contribute to muscle fiber
damage and wastage of skeletal muscles [170, 171]. Particu-
larly, repetitive cycles of contraction and relaxation of dys-
trophin deficient skeletal muscle produce microtears in the
SL membrane, and result in cellular instability and progres-
sive leakage of intracellular components including CK. Such
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a leakage of CK can be seen to reduce the intracellular level
of CK content and thus may impair the storage of energy
in skeletal muscle. In addition, the increased permeability
of the SL membrane due to dystrophin deficiency will pro-
mote an excessive entry of Ca?* into myocytes to result in the
development of intracellular Ca?*-overload, which is well
known to activate different proteolytic enzymes and pro-
duce muscle wastage. Furthermore, dystrophin deficiency
has been reported to induce different abnormalities in the SL
signal transduction pathways, which impair muscle regen-
eration and induce weakness in muscle performance [171].
A schematic representation of dystrophin deficiency related
events is shown in Fig. 2.

It needs to be emphasized that mutations of genes other
than for dystrophin gene have also been reported to induce
muscular disorders. For example, mutations in dysferlin gene
have been shown to decrease dysferlin content and result in
progressive development of muscle wasting and myopathic
characteristics [172]. Although deficiency of laminin-alpha2,
a protein of the extracellular matrix and a component of the
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Table 4. High energy phosphate stores, glycolytic intermediates and pyridine nucleotides in skeletal muscle of 215 day old BIO

14.6 strain of myopathic hamsters.

Control Myopathic (Late stage)

(i) Creatine phosphate (umol/g muscle) 13.3+£0.26 6.13 + 0.49*
(ii) Adenine nucleotides (pmol/g muscle)

ATP 5.97 £0.21 4.04 £0.27*

ADP 0.35 4-0.04 0.39 + 0.02

AMP 0.17 4 0.02 0.21 +0.02
(iii) Glycolytic intermediates (umol/g muscle)

Lactate 1.19 £ 0.02 7.18 £ 0.14*

Pyruvate 0.050 4 0.002 0.051 £ 0.003
(iv) Pyridine nucleotides (mpmol/g muscle)

NADH 139 + 5.0 168 £ 3.1*

NADPH 45+ 3.1 67 + 5.7%

The data are taken from our paper, Dhalla et al. Can J Biochem 50, 550-556, 1972 [30].
* Significantly (P < 0.05) different from the corresponding control values.
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Fig. 2. A schematic representation of dystrophin deficiency related events.

basal membrane, has also been reported to induce the SL in-
stability and result in the development of muscular disor-
der [23, 24], dystrophin mutations have been recognized as
the primary cause in the development of muscular dystro-
phy because of a significant decrease in the expression of dys-
trophin associated complex proteins. In fact, changes in dys-
trophin associated proteins such as sarcoglycan complex as
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transmembrane proteins have been shown to promote the
production of oxidative stress and lead to muscle cell death as
well as stiffness in myopathic muscle [171]. It should be men-
tioned that neuronal nitric oxide synthase, which interacts in-
directly with dystrophin protein, is also influenced markedly
due to dystrophin deficiency and thus affects the performance
of dystrophic muscle [173]. In addition, some studies have
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indicated that the membrane impairment occurs frequently
in the absence of dystrophin, leading to localized cell damage
and leakage of intracellular constituents [174]. However, a
significant increase in total Ca?* content is consistent with
excessive Ca?T entry into the cell through damaged mem-
branes due to dystrophin deficiency. Although other path-
ways of Ca?t entry such as Nat-Ca?* exchange [155] and
Ca?* -gating system (Ca®*/Mg?* - ecto-ATPase) [153] may
also be enhanced in muscular dystrophy as a consequence of
dystrophin deficiency, extensive experiments need to be car-
ried out to make any meaningful conclusion. Nonetheless, it
is evident that dystrophin deficiency may play a critical role
in the pathogenesis of muscular dystrophy due to the occur-
rence of intracellular Ca®t-overload [171, 173, 175].

5. Role of store-operated Ca’* entry in
muscular dystrophy

The store-operated Ca?* entry (SOCE) is one of the im-
portant mechanism for extracellular Ca®* influx and is ac-
tivated by depletion of intracellular Ca®* stores [176, 177].
Several studies have been carried out to explore the status
of SOCE regulation in normal and dystrophic skeletal mus-
cles [48, 178, 179]. In fact, SOCE it was found to play an es-
sential role in some physiological functions including skele-
tal muscle development, contractile activity and metabolism.
Furthermore, it prevents muscle weakness and serves as a
signaling pool of Ca?* required to modulate muscle-specific
gene expression in myopathic muscle [180-183]. Abnor-
mal increases in the SOCE channel activity result in muscle
dysfunction including the activation of Ca?* signaling path-
ways leading to metabolic disorders, irregular protein han-
dling, and detrimental remodeling phenotype in the patho-
genesis of muscular disease [179, 180, 184-186]. The dis-
ruption of SOCE channels has been suggested to cause an
imbalance in the level of intracellular Ca?" and subsequent
Ca?*-dependent activation of proteases and muscle degen-
eration due to dystrophin deficiency in dystrophic muscle
[40, 187, 188]. It has been reported that the occurrence of an
excessive SOCE occurrence is an early event in the pathology
of muscular dystrophy and the altered Ca?>* dynamics in my-
otubes result in continued cytosolic Ca?* transients and in-
creased Ca®* uptake by mitochondria [187, 189]. The phos-
pholipase As product, lysophosphatidylcholine, was found to
trigger Ca®* entry through SL channels, and acts as an in-
tracellular messenger responsible for the opening of store-
operated channels in dystrophic fibers [190]. Elevation of
intracellular Ca?* was found to increase phospholipase A2
activity and the overexpression activity of NADPH oxidase
and excessive production of reactive oxygen species (ROS)
were observed to contribute to the pathology in dystrophin
deficient dystrophic muscle [191, 192].

Both STIM1 and Orail proteins have been identified as
essential components of SOCE channel in the plasma mem-
brane [193, 194]. Studies from genetic mouse models with
deletion of these components have provided evidence of im-
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paired skeletal muscle growth, suggesting the physiologic
role for SOCE in skeletal muscle development and con-
tractile function [195-199]. These molecular components
which skeletal muscle expresses in abundance serve as the
main channel constituents involving SOCE for contribut-
ing to the mitochondrial Ca?* homeostasis and a range of
downstream signaling pathways as well as in the regulation
of several transcription factors [144, 200-204]. STIM1 is
a multipurpose stress transducer initiated by various stim-
uli such as oxidation, temperature, hypoxia, and acidifica-
tion and may regulate varied downstream targets includ-
ing different ion channels, pumps/exchangers, adaptor pro-
teins, endoplasmic reticulum (ER) chaperones, signaling en-
zymes, and ER stress/remodeling proteins. On the other
hand, Orail serves as a SOCE channel in skeletal mus-
cle [205]. Furthermore, fast kinetics of the SOCE activa-
tion in the skeletal muscle, depends on the pre-formation
of STIM1-protein complexes with the plasma-membrane,
whereas Orail-mediated Ca?* influx appears essential to
control the resting Ca?* concentration and proper SR Ca?*
filling. Ca®* influx through STIM1-dependent activation of
SOCE from the T-tubule system may recycle the extracellu-
lar Ca2" loss during muscle stimulation and thereby main-
tain proper filling of the SR Ca?* stores and muscle func-
tion [206, 207].
STIM1/Orail-dependent signals promote muscle fiber mat-
uration, growth, oxidative process, fatigue-resistant fibers,
and muscle development [195, 207-209]. There is evidence
to suggest that the STIM1/Orail-dependent SOCE promotes
sustained force generation during periods of prolonged activ-
ity as well as resistance to muscle fatigue [210-213].

Various studies have demonstrated that

Altered function of essential proteins regulating the SOCE
activity, contributes to or amplifies the pathogenesis of mus-
cle disorders including muscular dystrophy.
of studies have provided evidence for a modulatory con-
tribution of the STIM/Orail-dependent SOCE in animal
models of muscular dystrophy [178, 214-216]. Increased
STIM1/Orail expression as well as SOCE functionality, in-
cluding a shift in the threshold for SOCE activation and de-
activation to SR luminal Ca®* concentrations have been ob-
served in muscle fibers from dystrophic mice [178, 217]. In
another study, although STIMI1 levels were unchanged in
muscles from dystrophic mice, an increase was found in both
Orail mRNA and protein levels corresponding to the en-
hanced SOCE activity and SR Ca?" storage. Since these aug-
mented activities were reduced by either shRNA-mediated
Orail knockdown or treatment of animals with BTP-2 (a
potent CRAC channel inhibitor), it was proposed that in-
creased function of the STIM1/Oraildependent SOCE con-
tributes to Ca?" -mediated muscle fiber degeneration in dys-
trophic mice [218]. Enhanced SOCE and increased muscle
inflammation, fibrosis, necrosis, mitochondrial swelling, and
serum CK levels, were noticed due to the muscle-specific
STIMI1 overexpression in dystrophic mice [214]. The role
of STIM1-mediated Ca®* signaling for skeletal muscle hy-

A number
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pertrophic growth has also been demonstrated in the skeletal
muscle STIM1 knockout mice [195]. Furthermore, a correla-
tion of the overstimulation of SOCE in dystrophic cells with
increased STIM protein content has been reported [188, 207,
208]. Since overexpression of STIM1 stimulates muscle cell
differentiation whereas silencing inhibits this process [208],
it is evident that high SOCE and elevated STIM1 levels in
muscular dystrophy are associated with greater differentia-
tion of dystrophic myoblasts [198].

Increased rate of SOCE activity with high STIM1 protein
levels in dystrophic mice myoblasts has revealed that muta-
tion of dystrophin gene may significantly impact the cellular
calcium response to metabotropic stimulation. It is pointed
out that an aberrant response to extracellular stimuli may
contribute to the pathogenesis of muscular dystrophy and
inhibition of such responses might modify the progression
of this deadly disease [188]. Overactivation of SOCE upon
dystrophic cell stimulation may lead to intracellular Ca?*-
overload and increased susceptibility to cell death as well as
progressive muscle degeneration [219]. It has been demon-
strated that Ca?*-influx across an unstable SL due to in-
creased activity of the STIM1/Orail complex is a major de-
terminant in muscular dystrophy [214] and STIM1/Orail
along with TRPCI1 are involved in increasing SOCE in the
dystrophin deficient myotubes in both dystrophic patients
and dystrophic mice. Thus, the participation of a spe-
cific Ca?t/PKC/PLC pathway in increasing the SOCE ac-
tivity may be due to STIM1/Orail/TRPC1 protein interac-
tions, which are regulated by the dystrophin scaffold [215].
These findings support the functional role of STIM1/Orail-
dependent SOCE in the pathophysiology of muscular dystro-
phy and are considered to represent a potential therapeutic
target [216].

6. Mechanisms of subcellular Ca®’"-handling
abnormalities in dystrophic muscle

An excessive amount of Ca?* entering dystrophic mus-
cle is considered to play a critical role in raising the in-
tracellular level of Ca?T as well as inducing metabolic de-
fects, subcellular remodeling, Ca?*-handling abnormalities
and impairment of muscular function [15, 20, 25, 47, 155,
171, 180, 185, 217]. Increases in Ca?* -entry and SL perme-
ability have been shown to be associated with dystrophin de-
ficiency in muscular dystrophy; such defects in some other
types of this disease are linked to deficiencies of different
proteins including dysferlin and «-sarcoglycan [47, 171, 172,
180, 185, 220]. The role of intracellular Ca?* -overload in the
pathogenesis of muscular disorder is supported by observa-
tions that exercise in dystrophic mdx mice enhanced Ca®*-
influx, impaired Ca?*-homeostasis and aggravated this dis-
ease [221]. It should be pointed out that the increased Ca?*-
influx in myopathic muscle may be occurring through SOCE
channels [192, 216, 222], voltage-independent Ca?* -leakage
channels [223], voltage-dependent Ca?* -channels [189] and
Na*/Ca™ exchange system [154, 155, 224, 225] in the SL
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membrane. Since the SL phospholipase Ay [190] and adeny-
late cyclase activities [226] are increased in dystrophic mus-
cles, these signal transduction systems have also been sug-
gested to participate in enhancing Ca*"-entry into muscle
fiber. The involvement purinoceptor associated mechanisms
has also been reported to induce increased Ca?* -influx be-
cause the expressions and activities of P2X receptors are in-
creased in dystrophic muscle [227-229]. The increased activ-
ities of both Mg?*-ATPase and Ca?*-ATPase in the surface
membrane of dystrophic muscle were decreased with age of
the animal [230]. Likewise, some investigators have shown
an increase [231] whereas others have observed a decrease
in the Na™-K* ATPase activity in dystrophic muscle [232].
Such variable changes in the SL enzyme activities may be due
to the type or age of dystrophic animals. In fact, a variety of
changes in other SL components have been identified in dys-
trophic muscle [233, 234]. Taken together, all these obser-
vations support the view that increased Ca?* -influx through
the plasma membrane of dystrophic muscle may be a conse-
quence of SL remodeling during the development of muscu-
lar dystrophy.

The impaired function of dystrophic muscle is generally
considered to be due to Ca?*-handling abnormalities in my-
ocytes. Since the SR is intimately involved in maintain-
ing the intracellular Ca®*-homeostasis, different defects in
this intercellular organelle have been identified in muscu-
lar dystrophy. Marked alterations in the structure and func-
tion of Ca®*-release channel or ryanodine receptor in the
SR have been demonstrated in dystrophic muscle [235-237].
A progressive increase in the expression of ryanodine re-
ceptor and ryanodine receptor binding in the SR has been
shown to occur during the development of muscular dys-
trophy [238]. The leaky ryanodine receptors in dystrophic
muscle have been indicated to limit the activation of SOCE
channels and produce changes in Ca?* -homeostasis [239]. It
should also be noted that drastic reductions in both sarcalu-
menin and calsequestrin have been reported in dystrophic
muscle to depress Ca?*-binding in the lumen of SR and
are considered to play a role in abnormal Ca?*-handling
in muscular dystrophy [240, 241]. Some investigators have
shown marked depressions in the SR ATP-dependent Ca -
uptake and Ca?* -pump ATPase activities in dystrophic mus-
cle [242-245], whereas others have failed to observe such de-
fects [246-248]. Such conflicting results may be due to the
stage or type of muscular dystrophy. However, the depres-
sion in the Ca?*-transport in the SR can be seen to occur
because of the increased expression of sarcolipin, a known
endogenous inhibitor of Ca?*-pump ATPase, in dystrophic
muscle [249-251]. Although calmodulin mRNA and con-
tent in dystrophic muscle are increased, the stimulation of
the SR Ca?*-pump ATPase by calmodulin is markedly de-
pressed [252]. Thus, a reduction of Ca? " -transport in the SR
may also contribute to eliciting Ca?* -handling abnormalities
in dystrophic muscle. In this regard, it is noteworthy that
an overexpression of the SR Ca?*-pump ATPase has been
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demonstrated to alter intracellular Ca®>* levels in dystrophic
muscle and mitigate muscular dystrophy [181].

The development of Ca?" -handling abnormalities in dys-
trophic muscle has been considered to affect other subcellular
organelles such as mitochondria and myofibrils. In fact, mi-
tochondrial dysfunction has been shown to occur before the
onset of myofiber necrosis, muscle wasting and myofibrillar
defects [253]. Impaired substrate utilization and ATP synthe-
sis have been reported in dystrophic mitochondria [254, 255].
There occurs an uncoupling in the process of mitochondrial
oxidative phosphorylation during the progression of muscu-
lar dystrophy [256, 257]. Although the development of mi-
tochondrial Ca?*-overload is considered to induce defects in
energy production in dystrophic muscle [41], abnormalities
in ATP synthesis by dystrophic mitochondria have also been
shown to be caused by complex I insufficiency [258], dis-
ruption of mitochondrial protein Mss51 [259] and decreased
CK content [260]. It is pointed out that the impaired per-
formance of dystrophic muscle is not only a consequence of
depressed energy stores but defects in the process of energy
utilization have also been observed during the development
of muscular dystrophy. In this regard, myofibrillar Ca?*-
stimulated ATPase and myosin ATPase activities have been
shown to be decreased in dystrophic muscle [261, 262]. A
shift in myosin heavy chain from alpha to beta isoform as
well as changes in troponin-tropomyosin have been reported
to cause alterations in dystrophic myofibrillar ATPase activi-
ties [263, 264]. Increased Ca®* -activated protease activity in
dystrophic muscle has also been shown to induce myofibrillar
defects [100, 101, 265, 266].

It is becoming clear that Ca?*-handling abnormalities in
dystrophic muscle are associated with various defects in the
subcellular organelles. Such alterations have been suggested
to be caused by abnormalities of lipid metabolism in dys-
trophic muscle [78-88, 267, 268]. It may be mentioned that
marked changes inn cholesterol, triglycerides, unsaturated
fatty acids and phospholipid content have been observed in
dystrophic muscle [269-272]. Furthermore, increased oxida-
tive stress in dystrophic muscle [172, 191, 273, 274] has been
suggested to account for inducing remodeling and Ca?*-
handling abnormalities. It is pointed out that the expression
of NADPH oxidase, which generates ROS, is markedly in-
creased in addition to mitochondrial oxyradical production in
dystrophic muscle [275, 276]. Furthermore, synergistic in-
teractions of nitrosative/oxidative stresses due to increased
neural nitric oxide synthase in dystrophic muscle [277, 278],
have been indicated to be involved in Ca?*-handling abnor-
malities during the development of muscular dystrophy.

7. Strategies for the treatment of muscular
disorder

Corticosteroids therapy was reported for the first time to
delay the progression of muscular disorder and was consid-
ered as the gold standard for its treatment [279]. Because al-
most all types of muscular dystrophies are caused by a single-
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gene mutation [280], gene therapy was also introduced as a
potential intervention to replace, repair or bypass the mu-
tated gene [281, 281-283]. In order to restore an appro-
priate level of dystrophin in skeletal muscle, different gene
strategies have been based on implantation and delivery of
naked plasmid DNA for the dystrophin gene [284-288], by
adeno-associated virus (AAV) [289] as well as exon-skipping
with antisense oligonucleotides [290-292]. Due to chal-
lenges like targeted delivery of therapeutic molecules, lysoso-
mal setup, enzymatic degradation as well as low intracellular
uptake, successful working with gene therapy has stimulated
the search for different drug delivery systems such as poly-
mersomes [293, 294], liposomes and lipid-nucleic acid com-
plexes [295-297], PMMA nanoparticles [296, 298], and cell-
penetrating peptides [290, 298, 299]. While a great progress
has been made with gene therapy [12, 300], other interven-
tions such as injections of myoblasts (derived from healthy
donors) did not induce beneficial effects due to low surviv-
ability, migration and immune rejection of the transplanted
cells; thus stem cells based therapies have been suggested
for the treatment of diverse muscular disorders [301, 302].
Furthermore, various molecular pathways have been shown
to be most befitting for the development of novel medic-
inal products to prevent muscle degeneration and fibrosis.
The genetic modifiers including LTBP4, Jagged1 and osteo-
pontin, which regulate the disease progression by interfering
with pro-fibrotic and pro-regenerative pathways (TGF-,
myostatin and Notch signaling), have also offered a platform
to identify novel pharmacological targets for the therapy of
muscular weakness [303, 304].
(Fig. 3) are considered worthwhile for not only preventing
the progression of this disorder but also the improvement of
dystrophic muscle performance.

Thus, several approaches

It is noteworthy that, recent data have shown better ef-
ficiency of gene therapy when high doses are administered
[287]. Although high doses are fairly tolerated and achieve
adequate transgene expression, these lack adequate balance
of safety and efficacy for the success of gene therapy [305].
Clinical trials have shown a slight risk of liver toxicity rep-
resented by transient elevation in liver enzymes and biliru-
bin as side effects in humans subjected to such a gene ther-
apy. Furthermore, the major obstacle for gene therapy is
the pre-existing immune reaction to AAV, which is used as
vehicle; but the use of plasmapheresis was found to evade
the immune reaction to AAV and this was considered to al-
low safe administration of gene therapy to patients with im-
paired muscular function [306]. Although, there is some op-
timism for utilizing plasmapheresis or T-cell suppression by
agents such as rituximab and rapamycin to overcome the pre-
existing immunity, the success of these approaches remains
to be clearly demonstrated [307]. One of the shortcomings
for the use of AAV is its limited packaging capacity for dys-
trophin molecule, which necessitated the development of a
shorter protein, mini-dystrophin [308]. The construction of
mini-dystrophin was based on the shortened dystrophin pro-
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Fig. 3. Current strategies for the treatment of muscular dystrophy.

tein as expressed in dystrophic muscle and found to be highly
functional [309]. Although mini-dystrophin gene therapy
was shown to improve the systemic muscle function at early
stages, it was only effective partially in advanced cases of mus-
cular disease [308]. Such observations suggest that restoring
muscle function to near-normal levels with gene therapy will
probably necessitate additional research to improve and en-
hance the muscle strength in dystrophic muscle.

Since the intricacy of numerous mutations of dystrophin
gene causes several challenges for the dystrophin gene ther-
apy, a great deal of experimental work is needed for hav-
ing an effective treatment of muscular disorder. Further-
more, it should be recognized that deficiency of laminin—
alpha 2 protein has also been reported in dystrophic mus-
cle and this was shown to be attenuated by omigapil, an an-
tiplatelet agent [23]. Thus, it is likely that some combina-
tion gene therapy may prove more beneficial in delaying the
course of this disease progression. It is also pointed out that
pathological lesions in dystrophic muscle were found to be
associated with marked increase in Ca?* content but these
changes were not prevented with verapamil treatment, a well
known antagonist of voltage sensitive Ca?*-channels in the
SL membrane [147]. On the other hand, reduction of Ca®™ -
influx through SOCE channels was found to improve func-
tion in diseased muscle [185, 189]. Reintroduction of mini-
dystrophin in dystrophic muscle was also reported to reduce
Ca®* transients as a consequence of its effect on SOCE chan-
nels [192]. In addition, inhibition of phospholipase Ay as
well as lysophosphatidylcholine production was shown to de-
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press Ca?T -entry and prevent the degeneration of dystrophic
muscle [190]. It should be mentioned that diapocynin, an in-
hibitor of NADPH oxidase, which reduces the production of
ROS, was observed to depress the phospholipase A, activ-
ity as well as Ca?*-influx through SOCE channels in dys-
trophic muscle. Accordingly, it is suggested that gene ther-
apy in combination with some inhibitors of Ca?* -entry and
oxidative stress may be more effective for the treatment of
muscular disorder.

8. Conclusions and future perspectives

From the foregoing discussion, it is evident that muscu-
lar dystrophy is a group of complex diseases, which results
in skeletal muscle degeneration, loss of muscle fibers and im-
paired muscle function. Some forms of muscular dystrophy
are considered to be a consequence of a genetic defect leading
to deficiency of dystrophin for inducing abnormalities in the
SL membrane. The progression of this disease is associated
with leakage of intracellular enzymes and other constituents,
maldistribution of electrolyte content, marked metabolic al-
terations and development of necrosis, apoptosis as well as
fibrosis in dystrophic skeletal muscle. The depression in the
high energy stores as a consequence of the mitochondrial
Ca%t-overload, and abnormalities in the SR due to defects
in Ca?*-release channel and Ca?"-pump ATPase are con-
sidered to explain the impaired muscle performance. On the
other hand, the activation of different proteolytic enzymes
due to the occurrence of intracellular Ca®*-overload is re-
sponsible for dystrophic muscle degeneration and wastage.
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Some studies concerning defects in the SL membrane and
other subcellular organelles as well as metabolic status of
skeletal muscle have been conducted by employing a myo-
pathic hamster model of muscular weakness. Other stud-
ies by using genetic mouse and chicken models of muscu-
lar dystrophy indicate that dystrophin deficiency induce the
activation of SOCE channels, Nat-Ca%* exhanger (forward
mode) and Ca?*/Mg?* ATPase (Ca®*-gating system) in the
SL memebrane and promote the occurrence of intracellu-
lar Ca?* and subsequent abnormalities in dystrophic muscle.
A schematic representation of some main events associated
with the development as well as consequence of intracellu-
lar Ca?*-overload due to dystrophin-deficiency is shown in
Fig. 4. Various, treatments including gene therapy with dys-
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trophin and some pharmocological interventions such as an-
tioxidants are being attempted for delaying the progression
of this disease as well as improving the performance of dys-
trohpic muscle. It is suggested that a combination therapy,
by emplying dystrophin gene and some drugs, which reduce
the development of intracellular Ca?*-overload, may prove
more beneficial for the treatment of impaired muscular per-
formance.
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